1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
| import math from collections import OrderedDict
import torch.nn as nn
class BasicBlock(nn.Module): def __init__(self, inplanes, planes): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( inplanes, planes[0], kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(planes[0]) self.relu1 = nn.LeakyReLU(0.1) self.conv2 = nn.Conv2d( planes[0], planes[1], kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes[1]) self.relu2 = nn.LeakyReLU(0.1)
def forward(self, x): residual = x
out = self.conv1(x) out = self.bn1(out) out = self.relu1(out)
out = self.conv2(out) out = self.bn2(out) out = self.relu2(out)
out += residual return out
class DarkNet(nn.Module): def __init__(self, layers): super(DarkNet, self).__init__() self.inplanes = 32 self.conv1 = nn.Conv2d( 3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu1 = nn.LeakyReLU(0.1)
self.layer1 = self._make_layer([32, 64], layers[0]) self.layer2 = self._make_layer([64, 128], layers[1]) self.layer3 = self._make_layer([128, 256], layers[2]) self.layer4 = self._make_layer([256, 512], layers[3]) self.layer5 = self._make_layer([512, 1024], layers[4])
self.layers_out_filters = [64, 128, 256, 512, 1024]
for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
def _make_layer(self, planes, blocks): layers = [] layers.append(("ds_conv", nn.Conv2d( self.inplanes, planes[1], kernel_size=3, stride=2, padding=1, bias=False))) layers.append(("ds_bn", nn.BatchNorm2d(planes[1]))) layers.append(("ds_relu", nn.LeakyReLU(0.1))) self.inplanes = planes[1] for i in range(0, blocks): layers.append(("residual_{}".format( i), BasicBlock(self.inplanes, planes))) return nn.Sequential(OrderedDict(layers))
def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x)
x = self.layer1(x) x = self.layer2(x) out3 = self.layer3(x) out4 = self.layer4(out3) out5 = self.layer5(out4) return out3, out4, out5
def darknet53(): model = DarkNet([1, 2, 8, 8, 4]) return model
|