1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
| import math from functools import partial
import torch import torch.nn as nn
class MultiboxLoss(nn.Module): def __init__(self, num_classes, alpha=1.0, neg_pos_ratio=3.0, background_label_id=0, negatives_for_hard=100.0): self.num_classes = num_classes self.alpha = alpha self.neg_pos_ratio = neg_pos_ratio if background_label_id != 0: raise Exception('Only 0 as background label id is supported') self.background_label_id = background_label_id self.negatives_for_hard = torch.FloatTensor([negatives_for_hard])[0]
def _l1_smooth_loss(self, y_true, y_pred): abs_loss = torch.abs(y_true - y_pred) sq_loss = 0.5 * (y_true - y_pred)**2 l1_loss = torch.where(abs_loss < 1.0, sq_loss, abs_loss - 0.5) return torch.sum(l1_loss, -1)
def _softmax_loss(self, y_true, y_pred): y_pred = torch.clamp(y_pred, min=1e-7) softmax_loss = -torch.sum(y_true * torch.log(y_pred), axis=-1) return softmax_loss
def forward(self, y_true, y_pred): num_boxes = y_true.size()[1] y_pred = torch.cat([y_pred[0], nn.Softmax(-1)(y_pred[1])], dim=-1)
conf_loss = self._softmax_loss(y_true[:, :, 4:-1], y_pred[:, :, 4:])
loc_loss = self._l1_smooth_loss(y_true[:, :, :4], y_pred[:, :, :4])
pos_loc_loss = torch.sum(loc_loss * y_true[:, :, -1], axis=1) pos_conf_loss = torch.sum(conf_loss * y_true[:, :, -1], axis=1)
num_pos = torch.sum(y_true[:, :, -1], axis=-1)
num_neg = torch.min(self.neg_pos_ratio * num_pos, num_boxes - num_pos) pos_num_neg_mask = num_neg > 0 has_min = torch.sum(pos_num_neg_mask)
num_neg_batch = torch.sum( num_neg) if has_min > 0 else self.negatives_for_hard
confs_start = 4 + self.background_label_id + 1 confs_end = confs_start + self.num_classes - 1
max_confs = torch.sum(y_pred[:, :, confs_start:confs_end], dim=2)
max_confs = (max_confs * (1 - y_true[:, :, -1])).view([-1])
_, indices = torch.topk(max_confs, k=int( num_neg_batch.cpu().numpy().tolist()))
neg_conf_loss = torch.gather(conf_loss.view([-1]), 0, indices)
num_pos = torch.where(num_pos != 0, num_pos, torch.ones_like(num_pos)) total_loss = torch.sum( pos_conf_loss) + torch.sum(neg_conf_loss) + torch.sum(self.alpha * pos_loc_loss) total_loss = total_loss / torch.sum(num_pos) return total_loss
def weights_init(net, init_type='normal', init_gain=0.02): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and classname.find('Conv') != -1: if init_type == 'normal': torch.nn.init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': torch.nn.init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': torch.nn.init.kaiming_normal_( m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': torch.nn.init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError( 'initialization method [%s] is not implemented' % init_type) elif classname.find('BatchNorm2d') != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) print('initialize network with %s type' % init_type) net.apply(init_func)
def get_lr_scheduler(lr_decay_type, lr, min_lr, total_iters, warmup_iters_ratio=0.1, warmup_lr_ratio=0.1, no_aug_iter_ratio=0.3, step_num=10): def yolox_warm_cos_lr(lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter, iters): if iters <= warmup_total_iters: lr = (lr - warmup_lr_start) * pow(iters / float(warmup_total_iters), 2) + warmup_lr_start elif iters >= total_iters - no_aug_iter: lr = min_lr else: lr = min_lr + 0.5 * (lr - min_lr) * ( 1.0 + math.cos(math.pi * (iters - warmup_total_iters) / (total_iters - warmup_total_iters - no_aug_iter)) ) return lr
def step_lr(lr, decay_rate, step_size, iters): if step_size < 1: raise ValueError("step_size must above 1.") n = iters // step_size out_lr = lr * decay_rate ** n return out_lr
if lr_decay_type == "cos": warmup_total_iters = min(max(warmup_iters_ratio * total_iters, 1), 3) warmup_lr_start = max(warmup_lr_ratio * lr, 1e-6) no_aug_iter = min(max(no_aug_iter_ratio * total_iters, 1), 15) func = partial(yolox_warm_cos_lr, lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter) else: decay_rate = (min_lr / lr) ** (1 / (step_num - 1)) step_size = total_iters / step_num func = partial(step_lr, lr, decay_rate, step_size)
return func
def set_optimizer_lr(optimizer, lr_scheduler_func, epoch): lr = lr_scheduler_func(epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr
|