参考博文:
Pytorch之contiguous的用法 函数会使tensor变量在内存中的存储变得连续。 contiguous,():view只能用在contiguous的variable上。如果在view之前用了transpose%2C permute等,需要用contiguous ()来返回一个contiguous copy。)
contiguous
tensor变量调用contiguous()函数会使tensor变量在内存中的存储变得连续。
contiguous():view只能用在contiguous的variable上。如果在view之前用了transpose, permute等,需要用contiguous()来返回一个contiguous copy。
一种可能的解释是:
有些tensor并不是占用一整块内存,而是由不同的数据块组成,而tensor的view()操作依赖于内存是整块的,这时只需要执行contiguous()这个函数,把tensor变成在内存中连续分布的形式。
is_contiguous
判断是否contiguous用torch.Tensor.is_contiguous()函数。
1 | import torch |
在pytorch的最新版本0.4版本中,增加了torch.reshape(), 这与 numpy.reshape 的功能类似。它大致相当于 tensor.contiguous().view()