1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
| import argparse import cv2 import numpy as np import torch from torchvision import models
from pytorch_grad_cam import GradCAM, \ HiResCAM, \ ScoreCAM, \ GradCAMPlusPlus, \ AblationCAM, \ XGradCAM, \ EigenCAM, \ EigenGradCAM, \ LayerCAM, \ FullGrad, \ GradCAMElementWise
from pytorch_grad_cam import GuidedBackpropReLUModel from pytorch_grad_cam.utils.image import show_cam_on_image, \ deprocess_image, \ preprocess_image from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--use-cuda', action='store_true', default=False, help='Use NVIDIA GPU acceleration') parser.add_argument( '--image-path', type=str, default='./examples/both.png', help='Input image path') parser.add_argument('--aug_smooth', action='store_true', help='Apply test time augmentation to smooth the CAM') parser.add_argument( '--eigen_smooth', action='store_true', help='Reduce noise by taking the first principle componenet' 'of cam_weights*activations') parser.add_argument('--method', type=str, default='gradcam', choices=['gradcam', 'hirescam', 'gradcam++', 'scorecam', 'xgradcam', 'ablationcam', 'eigencam', 'eigengradcam', 'layercam', 'fullgrad'], help='Can be gradcam/gradcam++/scorecam/xgradcam' '/ablationcam/eigencam/eigengradcam/layercam')
args = parser.parse_args() args.use_cuda = args.use_cuda and torch.cuda.is_available() if args.use_cuda: print('Using GPU for acceleration') else: print('Using CPU for computation')
return args
if __name__ == '__main__': """ python cam.py -image-path <path_to_image> Example usage of loading an image, and computing: 1. CAM 2. Guided Back Propagation 3. Combining both """
args = get_args() methods = \ {"gradcam": GradCAM, "hirescam":HiResCAM, "scorecam": ScoreCAM, "gradcam++": GradCAMPlusPlus, "ablationcam": AblationCAM, "xgradcam": XGradCAM, "eigencam": EigenCAM, "eigengradcam": EigenGradCAM, "layercam": LayerCAM, "fullgrad": FullGrad, "gradcamelementwise": GradCAMElementWise} model = models.resnet50(pretrained=True)
target_layers = [model.layer4] rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1] rgb_img = np.float32(rgb_img) / 255 input_tensor = preprocess_image(rgb_img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
targets = None
cam_algorithm = methods[args.method] with cam_algorithm(model=model, target_layers=target_layers, use_cuda=args.use_cuda) as cam:
cam.batch_size = 32 grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=args.aug_smooth, eigen_smooth=args.eigen_smooth)
grayscale_cam = grayscale_cam[0, :] cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
gb_model = GuidedBackpropReLUModel(model=model, use_cuda=args.use_cuda) gb = gb_model(input_tensor, target_category=None)
cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam]) cam_gb = deprocess_image(cam_mask * gb) gb = deprocess_image(gb)
cv2.imwrite(f'{args.method}_cam.jpg', cam_image) cv2.imwrite(f'{args.method}_gb.jpg', gb) cv2.imwrite(f'{args.method}_cam_gb.jpg', cam_gb)
|